Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Biotechnology ; (12): 1731-1746, 2023.
Article in Chinese | WPRIM | ID: wpr-981166

ABSTRACT

Adiponectin receptor 1 (AdipoR1) and Adiponectin receptor 2 (AdipoR2) can bind to adiponectin (AdipoQ) secreted by adipose tissue to participate in various physiological functions of the body. In order to explore the role of AdipoR1 and AdipoR2 in amphibians infected by Aeromonas hydrophila (Ah), the genes adipor1 and adipor2 of Rana dybowskii were cloned by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed by bioinformatics. The tissue expression difference of adipor1 and adipor2 was analyzed by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR), and an inflammatory model of R. dybowskii infected by Ah was constructed. The histopathological changes were observed by hematoxylin-eosin staining (HE staining); the expression profiles of adipor1 and adipor2 after infection were dynamically detected by qRT-PCR and Western blotting. The results show that AdipoR1 and AdipoR2 are cell membrane proteins with seven transmembrane domains. Phylogenetic tree also shows that AdipoR1 and AdipoR2 cluster with the amphibians in the same branch. qRT-PCR and Western blotting results show that adipor1 and adipor2 were up-regulated at different levels of transcription and translation upon Ah infection, but the response time and level were different. It is speculated that AdipoR1 and AdipoR2 participate in the process of bacterial immune response, providing a basis for further exploring the biological functions of AdipoR1 and AdipoR2 in amphibians.


Subject(s)
Animals , Receptors, Adiponectin/metabolism , Phylogeny , Adiponectin/metabolism , Cloning, Molecular , Ranidae/genetics
2.
Chinese Journal of Biotechnology ; (12): 1859-1873, 2022.
Article in Chinese | WPRIM | ID: wpr-927823

ABSTRACT

Leptin receptor overlapping transcript (LepROT) plays multiple roles in the regulation of immune systems. However, very little information is available about the anti-infectious mechanisms of amphibians LepROT. In this study, the cDNA sequence of the Rana dybowskii LepROT gene was determined by using RT-PCR and bioinformatics analysis. Then, the Aeromonas hydrophila (Ah) and lipopolysaccharides (LPS) infected models of R. dybowskii was constructed to obtain histopathological characteristics. Constitutive expression of LepROT mRNA and NF-κB signaling pathway were detected by real-time quantitative PCR. The full-length cDNA of LepROT gene was 396 bp and encoded 131 amino acids. Amino acid sequence analysis revealed LepROT shares 93.74% and 86.39% identity with homologues from other amphibians and mammals respectively, and the LepROT gene was quite conserved among different species. After infection, the relative expression levels of LepROT, NF-κB, IKKα and IKKβ mRNA were all significantly upregulated (P < 0.01), but showed a diverse temporal pattern of up-regulation in different tissues. Therefore, it was proposed that the LepROT gene of R. dybowskii might activate the NF-κB signaling pathway to exert anti-infectious effects, thus providing evidence for further extending the biological function of LepROT.


Subject(s)
Animals , Cloning, Molecular , DNA, Complementary , Gene Expression Profiling , Gene Expression Regulation , Mammals/metabolism , NF-kappa B/genetics , Phylogeny , RNA, Messenger/genetics , Ranidae/genetics
3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 150-158, 2021.
Article in Chinese | WPRIM | ID: wpr-906156

ABSTRACT

Objective:To identify 24 <italic>Rana</italic> species such as <italic>Rana dybowskii</italic> by mitochondrial cytochrome C oxidase subunit I (<italic>CO</italic>Ⅰ) gene-based DNA barcoding and build the neighbour-joining (NJ) tree for hierarchical cluster analysis, so as to provide a basis for the identification and classification of <italic>Rana</italic> species as well as the discovery of new species. Method:<italic>R. dybowskii</italic>, <italic>R. chensinensis</italic>, <italic>R. amurensis</italic>, <italic>R. culaiensi</italic>s, and <italic>R. huanrenesis</italic>, ten for each species, were collected for DNA extraction and polymerase chain reaction (PCR) amplification<italic> </italic>and sequencing. A total of 50 <italic>CO</italic>Ⅰ gene sequences were obtained. Then 163 <italic>CO</italic>Ⅰ gene sequences for 24 species of <italic>Rana</italic> and one <italic>CO</italic>Ⅰ gene sequence for <italic>Pelophylax</italic>,<italic> Odorrana</italic>, <italic>Nidirana</italic>, <italic>Hylarana</italic>, and <italic>Amolops</italic> were harvested from GenBank. After sequence alignment by MEGA X, the parsimony-informative sites of <italic>CO</italic>Ⅰ gene sequences were analyzed and the intraspecific and interspecific genetic distances were calculated, followed by the built of NJ tree and hierarchical cluster analysis. Result:The <italic>CO</italic>Ⅰ gene sequences of 24<italic> Rana</italic> species including <italic>R. dybowskii</italic> were 554 bp in length and there were 210 parsimony-informative sites in total. The intraspecific genetic distance of each species was smaller than 2%. Except that the interspecific genetic distance between <italic>R. sangzhiensis</italic> and <italic>R. zhengi</italic> was 0.004, the genetic distances between the other species ranged from 0.024 to 0.228. <italic>R. sangzhiensis</italic> and <italic>R. zhengi</italic> were clustered into one branch and some <italic>R. dybowskii</italic> and <italic>R. uenoi</italic> into one branch. There were two separate branches for <italic>R. chensinensis</italic> and the other species were all clustered independently. Conclusion:<italic>CO</italic>Ⅰ-based DNA barcoding enabled the identification of 24 species of <italic>Rana</italic> including <italic>R.dybowskii</italic>. The findings supported that <italic>R. sangzhiensis</italic>, <italic>R. zhengi</italic>, <italic>R. coreana</italic>, and <italic>R. kunyuensis</italic> were the same species. One branch of <italic>R. chensinensis </italic>might be one of the four undownloaded species in Ranidae or a new species. The results have demonstrated that <italic>CO</italic>Ⅰ-based DNA barcoding allows not only the identification of 24 species of Rana including <italic>R. dybowskii </italic>but also the classification of ranidae species and the discovery of new species or subspecies.

4.
Chinese Journal of Biotechnology ; (12): 1323-1333, 2020.
Article in Chinese | WPRIM | ID: wpr-826844

ABSTRACT

The aim of this study was to investigate the expression of MHCⅠ gene in different tissues of Rana dybowskii under the stress of Aeromonas hydrophila (Ah), and to provide evidence for revealing the anti-infective immune response mechanism of amphibians. The experimental animal model of Aeromonas hydrophila infection was first constructed, and the pathological changes were observed by HE staining. The MHCⅠ gene α1+α2 peptide binding region of Rana dybowskii was cloned by RT-PCR and analyzed by bioinformatics. Real-time PCR was used to detect the transcription level of MHCⅠ in different tissues under Ah stress. After Ah infection, the skin, liver and muscle tissues showed signs of cell structure disappearance and texture disorder. The MHCⅠ gene α1+α2 peptide binding region fragment was 494 bp, encoding 164 amino acids, and homology with amphibians. Above 77%, the homology with mammals was as low as 14.96%, indicating that the α1+α2 region of MHC gene was less conserved among different species. The results of real-time PCR show that the liver, spleen and kidney of the experimental group were under Ah stress. The transcript levels of MHCⅠ gene in skin and muscle tissues were higher than those in the control group at 72 h, but the time to peak of each tissue was different (P<0.01), indicating that the response time of MHCⅠ gene in different tissues was different under Ah stress. This study provides a reference for further exploring the immune function of MHC molecules in anti-infection.


Subject(s)
Animals , Aeromonas hydrophila , Gene Expression Profiling , Gene Expression Regulation , Allergy and Immunology , Gram-Negative Bacterial Infections , Allergy and Immunology , Liver , Metabolism , Ranidae , Genetics , Allergy and Immunology , Microbiology , Skin , Metabolism
5.
China Journal of Chinese Materia Medica ; (24): 1572-1577, 2017.
Article in Chinese | WPRIM | ID: wpr-350146

ABSTRACT

Ranae Oviductus has a high economic and social value, but its adulterants are more numerous, which causes a great confusion to the market. Using DNA bar code technology based on COI sequence for PCR amplification and sequencing of the identified Rana dybowskii, R. chensinensis, R. huanrensis and R. amurensiss, the COI gene database of four species of Rana was established, and comparing the measured sequence with the sequence of GenBank, four kinds of Rana were identified. The MEGA (molecular evolutionary genetics analysis) 7 .0 software was used to calculate the genetic distance of K2P and construct the NJ (neighbor-joining) system cluster tree. The sequence of the four species of Rana measured were clustered into one group with the sequence of the four kinds of Rana downloaded from GenBank, but separated from the two outer groups downloaded from GenBank. The COI gene of the R. dybowskii was likely to have regional differences, however this technique failed to distinguish male and female Rana. The results showed that DNA bar code technology could accurately identify the base of original animal of R. oviductus. It indicates that DNA bar code COI provides a new method for the identification of R. oviductus.

SELECTION OF CITATIONS
SEARCH DETAIL